Inteligência analítica em tempo real como arma secreta dos varejistas

Por Nélito Pereira

Um cliente entra na loja, a única perfumaria em um raio de um quilômetro, e coloca produtos na cesta. Um bom e atento vendedor, ao reconhecê-lo e sabendo de suas preferências, comportamento e tendências de consumo, recomenda outros dois produtos. O cliente adiciona os itens à cesta e o valor de sua compra aumenta de R$ 94 para R$ 131,10. Bom este vendedor! Mas, e se ele não conhecesse o cliente, o que recomendaria? Esse exemplo parece ser uma história dos anos 80, naquela cidadezinha do interior.foto-nelito

 

Em um momento de crescente pressão por melhores resultados, empresas do segmento varejista têm procurado aumentar o valor do ticket médio de suas transações no e-commerce através de melhores recomendações de produtos para seus clientes. Para isso, é necessário entender o perfil de cada consumidor, conhecer seu histórico de compras e seu comportamento – de preferência em tempo real. Estamos falando de uma solução de recomendação inteligente, que define a próxima melhor oferta para cada cliente, utilizando técnicas de Big Data, inteligência analítica, regras de negócio e o comportamento do consumidor - tudo isso em real-time.

 

A decisão da ‘Next Best Offer’ (NBO) para um cliente específico passa pela gestão dos dados disponíveis e por um processo analítico, no qual técnicas de modelagem preditiva e de auto-aprendizagem automatizadas (self-learning analytical process) identificam suas propensões de compra. Consumidores não identificados assemelham-se a perfis comportamentais conhecidos e a recomendação inteligente e relevante também é uma realidade. Um motor de decisão orquestra toda esta inteligência analítica acrescida com as regras de negócios e estratégias da empresa e disponibiliza as recomendações personalizadas de forma dinâmica (em tempo real), no momento de cada interação do cliente com a loja.

 

Recentemente, na tentativa de aumentar seu ticket médio, uma empresa brasileira do segmento varejista e reconhecida por inovações, iniciou um piloto com um subconjunto de clientes definidos por amostragem randômica. O objetivo era avaliar a capacidade de entrega de inteligência analítica, regras de negócios e NBO em real-time em seu site de e-commerce. O primeiro passo foi a criação de modelos preditivos utilizando técnicas estatísticas para a determinação das propensões de cada perfil de cliente e a melhor associação entre os produtos. Em seguida, foram configuradas as regras de negócios e a integração do motor de decisão ao site. Para a avaliação e mensuração dos resultados, o motor de recomendação considerou dois diferentes grupos de controle (um exposto a recomendações aleatórias e um segundo a recomendações padrões) e registrou o histórico de tudo.

 

O sucesso desse piloto definiria a adoção ou não da solução e isso deu-se através de análises e comparações dos resultados dos grupos de controle com o grupo de clientes, que recebeu a NBO determinada pela recomendação inteligente. Após três meses de piloto, os resultados demonstraram que o aumento do valor do ticket médio obtido, projetado para todos os clientes, representou um incremento no lucro capaz de pagar o investimento em poucos meses, ou seja, do prazo de recuperação do capital investido na solução (payback).

Por essas razões, a mesma empresa varejista decidiu expandir o uso da solução para outros canais de interação com o cliente, como televendas e aplicativos móveis bem como para outros países onde também mantém operação. A inteligência analítica em tempo real é o “bom vendedor” do mundo atual, aumentando o ticket médio no varejo on-line.

 

Share This Post

Post Comment